diumenge, 3 d’abril del 2016

Chromoplast and Amiloplasts observation


Introduction:

In this experiment we will use a potato and tomato to observe the cells that are inside of them.

- Chromoplast: Keep pigments.
- Amylopectin: Cells that keep the starch. 


Objectives:
  1. To see the pigments of the tomato and if all the cell is red. 
  2. With the potato, to see the aminoplasts


Procedure:

FIRST PART: PROCEDURE OF THE TOMATO:

1. Peel the tomato and take a small part of the pulp. 

2. Prepare a procedure called "squash". 

3. Observe with the microscope. 

4. Cut a small piece of paper (2cm) and you need to push and turn with the finger to the tomato, and then take 
away the paper. 


THE CELLS ARE WHITE, AND HAVE RED PIGMENTS THAT ARE THE CLOROPLAST !!


SECOND PART: PROCEDURE OF THE POTATO:

1. You need to cut a small piece of potato and take the white liquid that is insade with a dropper. 

2. You need to put the liquid with the light a few minutes (the liquid need to be dry). 

3. Put a few drops of lugol and wait 3 minutes. 

4. Observe with the microscope. 


YOU CAN SEE THE AMINOPLASTS !!


MICROTOME PART:

1. We need distilled water and with the microtome cut the piece of potato ant put inside the distilled water. 

2. Dye the piece of potato. 

3. Observe with the microscope. 


WE OBSERVE THE STARCH ORGANELLeS INSIDE THE CELL !!









LIFE IN A DROP OF WATER

Introduction:


In this experiment we took some drops of water of different places (water of a fishbowl and stagnant water)

Objectives:
  1. To see if there are organism alive.

Material:

- Dropper
- Microscope
- Coverslips

Procedure:

1. We took with the dropper some drops of the different water.


2. We tried to see organisms alive with the microscope.

Observations:

It's difficult see the organisms.
(Dania's blog photo)


RED ONION OSMOSIS

Introduction: In this experiment we will see the process called osmosis of a red onion, with different material (distilled water, salt water and a microscope).

Objectives:

  1. To see what happens to the piece of onion when we put distilled water and salt water.


Procedure:

PHASE 1: NORMAL CELLS/DRY MOUNT 

1. Carefully slice away the colored layer of cells from the red onion. This should only be the thin purple layer. Trim to get a piece about this actual size.

2. Place the thin, purple onion layer on a dry microscope slide shinny side up-do not put on water or cover slip yet.

3. Scan the entire onion tissue on low power to find and center the most purple area and focus. Set the microscope to medium power and focus the view.

4. Take a picture


PHASE 2: SALT WATER ENVIRONMENT/WET MOUNT 

Now that you have observed the layer of normal cells which are the subject of this lab, make a wet mount using 2 or 3 drops of salt water solution on the onion tissue then install cover slip.

5. Watch the cells for approximately 2-3 minutes or longer as you again survey the entire onion tissue on low power. You should see changes within many of the cells intially near the perimeter of the onion tissue. As time passes all or most of the cells should become affected by the salt water. Find some cells that have been affected and observe them under medium power.

-WE CAN SEE THE PROCESS OF PLASMOLISIS !!


PHASE 3: DISTILLED WATER ENVIRONMENT/WET MOUNT 

6. After you have colored the diagram correctly above, you need to prepare for phase 3 of this lab by putting the entire salt water wet mount in the dish of tap water to rinse off the salt water from the slide, cover slip and onion tissue layer. Dry the slide and cover-slip then gently dab the onion tissue dry.

7. Make a wet mount of the onion tissue you just rinsed using 2 or 3 drops of distilled water on the onion tissue and install the cover slip. 
Watch the cells for approximately 2-3 minutes or longer as you again survey the entire onion tissue on low power. You should see changes within many of the cells intially near the perimeter of the onion tissue. As tine passes all or most of the cells should become affected by the distilled water. Find some cells that have been affected by the distilled water and observe them under medium power.

-THE CELLS BECOME BIGGER BECAUSE TAKE THE WATER !!











(Dania's blog)















Questions: 

1. When the salt solution was added to the onion cells, where was the greater concentration (most pure) of water? (inside or outside the cell membrane). How do know this? Explain:

Inside, because outside is the salt solution.

2. In the winter, grass often dies near the roads that have been covered in salt to remove the ice. Using what you have learned in this experiment, what do you think is the reason the grass dies?

The cells leaved water.

3. Which kinf of transport does water follow across the membrane?

 Passive (membrane difussion)





(No tinc fotos perquè vaig faltar aquell dia)

ANIMAL CELLS vs PLANTS CELLS

Introduction:
In this lab experiment we are going to identify and differentiate the animal and plant cells. The food that we will use are onion and allium porrum (vegetal cells). And to see the animal cells we scrape the inner side of the cheek using a toothpick.

Material:

- Toothpick
- 2 slides
- 2 covers slips
- Distilled water
- Methylene blue
- Iodine
- Onion 
- Glycerine

Objectives:
  1. Identify the major components of cells. 
  2. Differemtiate between animal and plant cells. 
  3. Measure dimensions of the entire cell and nucleus. 

Procedure:

(PLANT CELLS OBSERVATION)

1.  Pour distilled water into a watch glass. 

2. Peel off the leaf from half a piece of onion and using forceps, pull out a piece of transparent onion peel (epiderms) from the leaf. 

3. Put the epiderms in the watch glass containing distilled water. 




























4. Take a few drops of iodine solution in a dropper and transfer into another watch glass. 

5. Using a brush, transfer the peel into the watch glass containing the dye. Let this remain in the iodine solution for 30 seconds.

6. Take the peel from the iodine solution and place it in the watch glass containing distilled water. 

7. Take a few drops of glycerine in a dropper and put 2 or 3 drops at the center of a dry glass slide. 

8. Using the brush, place the peel onto the slide containing glycerine. 

9. Take a cover slip and place it gently on the peel with the aid of a needle. 












10. Remove the extra glycerine using cellulose paper. 

11. Finally, view in the microscope the result 


































dijous, 11 de febrer del 2016

DNA EXTRACTION

Introduction

-Deoxyribonucleic acid (DNA) is a nucleic acid that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses.
-Nucleic acids are biopolymers formed by simple units called nucleotides. Each nucleotide is composed of a nitrogen-containing nucleobase (G, T, C, A) as well as a monosaccharide and a phospate group.
-These nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next.


Materials

- 1L Erlenmeyer flask
- 100mL beaker
- 10mL graduated cylinder
- Small funnel
- Glass stirring rod
- 10mL Pipet
- Knife
- Safety goggles
- Cheesecloth

- Kiwi
- Banana
- Pineapple juice (1mL / 5mL)
- Distilled Water
- 90% Ethanol ice-cold
- 7mL DNA buffer
  50mL dish soap
  15g NaCl
  900mL tap water


Objectives


  1. Study the DNA structure
  2. Understand the process of extracting DNA from a tissue


Procedure

Put the ethanol in the freezer, we will need it really cold later.

- Prepare the buffer in a 0'5L beaker: Add 450mL of tap water, 25mL of a dish soap and 7g NaCl. Stir the mixture.

























1. Peel the kiwi/banana and chop it to small pieces. Place the pieces of the kiwi in one 600mL beaker and smash with a fork until it becomes a juice puree. 

2. Add 8mL of buffer to the beaker. 

3. Later mash the kiwi/banana puree carefully for 1 minute without creating many bubbles. 

4. Finally filter the mixture: put the funnel on top of the graduated cylinder. Place the cheesecloth on top of the funnel. 










5. Add beaker contain carefully on top of the cheesecloth to fill the graduated cylinder. The juice will drain through the chessecloth but the chucks of kiwi/banana will not pass through into the graduated cylinder. 

6. Add the pineapple juice to the green juice (1mL of pineaplle juice to 5mL of DNA solution). This step will help us to obtain a purer solution of DNA. 

7. Tilt the graduated cylinder and pour in a equal amount of ethanol witg an automatic pipet. Put the ethanol through the sides of the graduated cylinder very carefully. You will need about equal volumes of DNA solution to ethanol. 


(Dania's blog photo)





8. Place the graduated cylinder so that it is eye level. Using the stirring rod, collect DNA at the boundary of ethanol and kiwi/banana juice. Do not stir the kiwi juice; only stir in the above ethanol layer. 

9. The DNA precipitate looks like long, white and thin fibers. 

10. Gently remove the stirring rod and examine what DNA looks like. 











RESULTS






QUESTIONS
1. Like a gelatine, white
2. To brake the cells, it's located in the cell wall
3. We add salt to brake the cells and soap to clean the proteins. Papaine cleans and delete the proteins.
4. It's a good method to catch it because the DNA goes to ethanol.







DETERMINACIÓ DE LA COMPOSICIÓ DE LA LLET (CASEÏNA, ALTRES PROTEÏNES, MIDÓ I GLÚCIDS REDUCTORS, PRESÈNCIA DE LÍPIDS)

Determinació de la llet

La llet conté vitamines, minerals, proteïnes, glúcids i lípids.
En aquesta pràctica identificarem tots aquests components i per tant serà un resum de totes les pràctiques d'identificació que hem realitzat al llarg del curs.


1.Determinació de la caseïna
La caseïna és una proteïna conjugada del tipus fosfoproteïna que se separa de la llet per acidificació i forma una massa blanca. Les fosfoproteïnes són un grup de proteïnes que es troben químicament unides a àcid fosfòric. La caseïna representa entre 77 i el 82% de les proteïnes presents a la llet. Aquesta proteïna presenta una baixa solubilitat (pH 4,6). En la primera part del experiment aïllareu la caseïna.

1- Afegim 200ml de llet en un vas de precipitats i l'escalfem fins 40 graus aproximadament.
2- El treiem del foc i afegim gota a gota àcid acètic (1ml d'àcid acètic glacial en 10 ml d'aigua destil.lada) amb un comptagotes. Agitem amb una vareta de vidre fins que acabi de precipitar tota la caseïna. (No afegir massa àcid acètic)

1                                           2


3- Separem la caseïna amb l'ajuda d'una espàtula i la posem en un vidre de rellotge. I posem-lo assecar en la placa calenta.
4- Afegim immediatament en el líquid que ens ha quedat 4 gr de carbonat de calci en pols. L'agitem al llarg d'uns minuts i el guardem per la següent part. Això és el sèrum de la llet.
5- Quan la caseïna hagi perdut l'aigua calculem el percentatge de caseïna aïllada sabent que la densitat de la llet és 1,03 g/ml.



5                                                  






                                                                   4

  4









2-Determinació d'altres proteïnes
Determinem la presència d'altres proteïnes en l'extracte (sèrum) de la pràctica anterior mitjançant la prova de Biuret. 
- 2ml de sèrum 
- 2ml d'hidròxid de sodi
- 5 gotes de sulfat de coure 









3- Determinació de midó i glúcids reductors
1.Determinem si la llet conté midó en el producte que hem extret (sèrum) de la pràctica anterior. 
2.Determinar la presència de glúcids reductors. 
- Petita quantitat de sèrum + lugol 
- Sudan III 























4- Determinació de la presència de lípids:
1.Determinem la presència de lípids de la llet en un tub d'assaig amb 2ml de llet. 
2.Al final afegim 1ml d'HCL al 50% al tub d'assaig anterior i l'escalfem suaument, finalment anotem els resultats que observem.
3.Provem-lo també amb el sèrum de la llet de la pràctica 1. 

- 2ml fehling A/B 







TAULA AMB ELS RESULTATS